IUPAP Prize for Atomic, Molecular, and Optical Physics 2019 awarded to BASE members Christian Smorra and Andreas Mooser

The IUPAP Prize for Atomic, Molecular, and Optical Physics 2019 was awarded to the BASE members Christian Smorra (RIKEN and CERN) and Andreas Mooser (RIKEN and MPIK). The highly competitive research prize was awarded…

“…for outstanding contributions to determine the most precise comparison of the proton-to-antiproton charge-to-mass ratios and the most precise comparison of the proton and antiproton magnetic moments, constituting two different world-record tests of the fundamental charge, parity, and time reversal symmetry in these systems.

Center for Time, Constants, and Fundamental Symmetries

Today we’ve celebrated the inauguration of the Max-Planck/PTB/RIKEN Center for Time, Constants and Fundamental Symmetries, the event took place at RIKEN’s Wako-Campus in Japan. We’ve organized a symposium with invited speakers Marianna Safronova (Univ. Delaware) and Yoshiro Takahashi (Kyoto University), and center speakers Klaus Blaum (MPG), Ekkehard Peik (PTB), and Stefan Ulmer (RIKEN). Guests like Prof. M. Stratmann (President MPG), Prof. J. Ullrich (President PTB), Prof. S. Koyasu and Prof. M. Kotani (RIKEN Executive Directors), and Dr. H. von Werthern, the ambassador of Germany in Japan, joined the event.

CERN research fellowships awarded to BASE members

We are happy to announce that the future research of our team members Elise Wursten and Jack Devlin will be supported by two individual, highly competitive CERN research fellowships. We greatfully acknowledge the invaluable support by CERN. Elise Wursten joined the BASE team in July 2018, she was previously working on measurements of the electric dipole moment of the neutron.

First explicit measurement of heating rates in a cryogenic Penning trap

Today we report on the first explicit measurement of cyclotron quantum heating rates in a cryogenic Penning trap. We demonstrate that the scaled electric field noise in our spin-analysis trap, an essential instrument in our 1.5 p.p.b. measurement of the antiproton magnetic moment, is much lower than observed in other ion trap experiments. It corresponds to a heating rate below 0.1 quanta per hour and a radial energy stability on the peV/s-level.

First Observation of Single Antiproton Spin Transitions

Today we have published a paper in Phys. Lett. B, in which we report on the detection of individual spin quantum transitions of a single trapped antiproton in a Penning trap. The spin state determination is based on the unambiguous detection of axial frequency shifts which are induced by the spin transition in presence of a magnetic bottle. We have achieved a detection fidelity of 92.6 % and demonstrated spin state initialization with 99.9% fideltiy.

Pages

You are here